Increasing efficiency of baculovirus-based r-protein production in orbitally shaken single-use bioreactors

Ina Dittler^a, Britta Badertscher^a, Katharina Blaschczok^a, Tim Bürgin^b, Tibor Anderlei^b, Peter Neubauer^c, Dieter Eibl^a and Regine Eibl^a

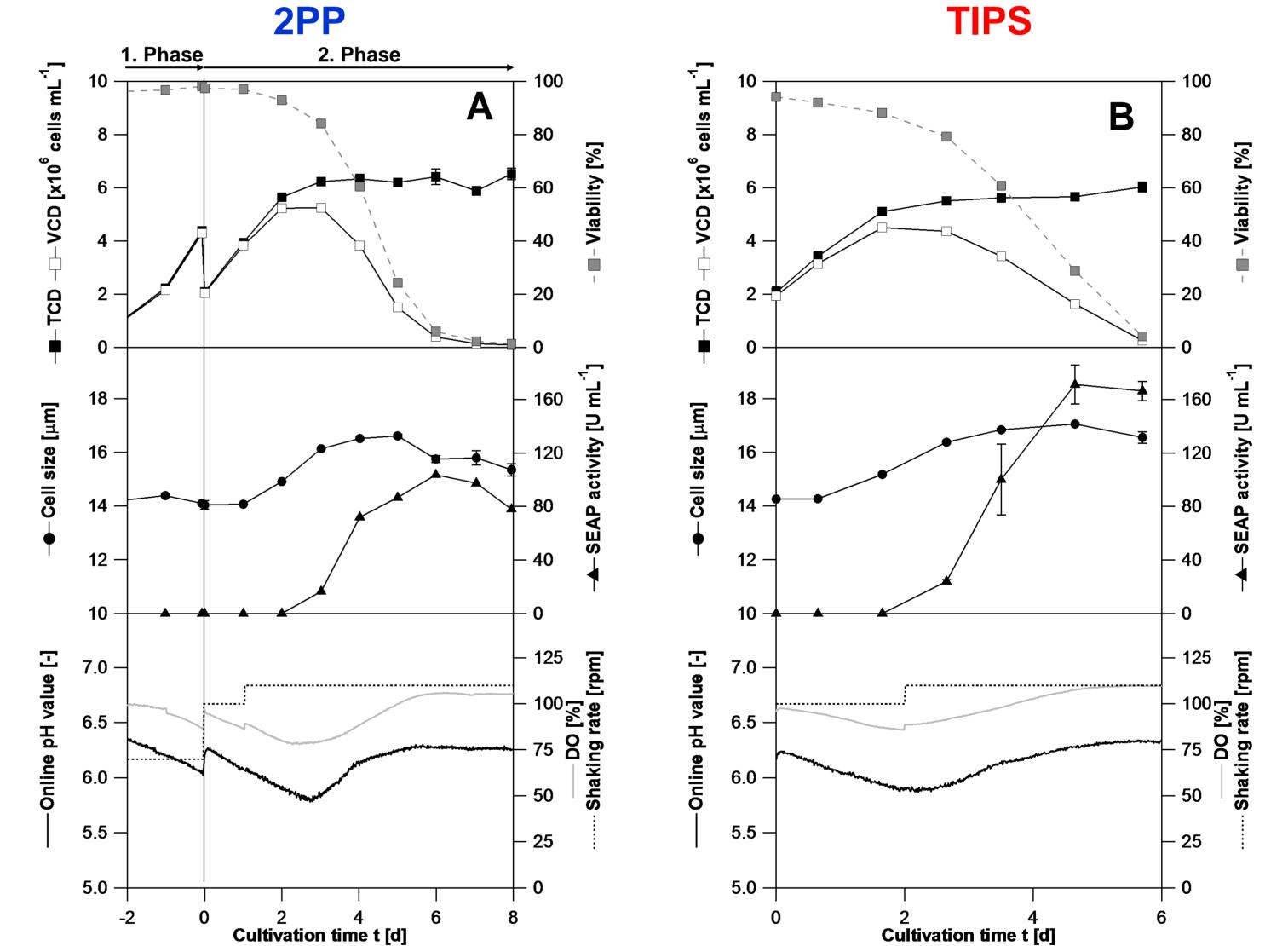
^a Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, Switzerland ^b Kühner AG, Switzerland

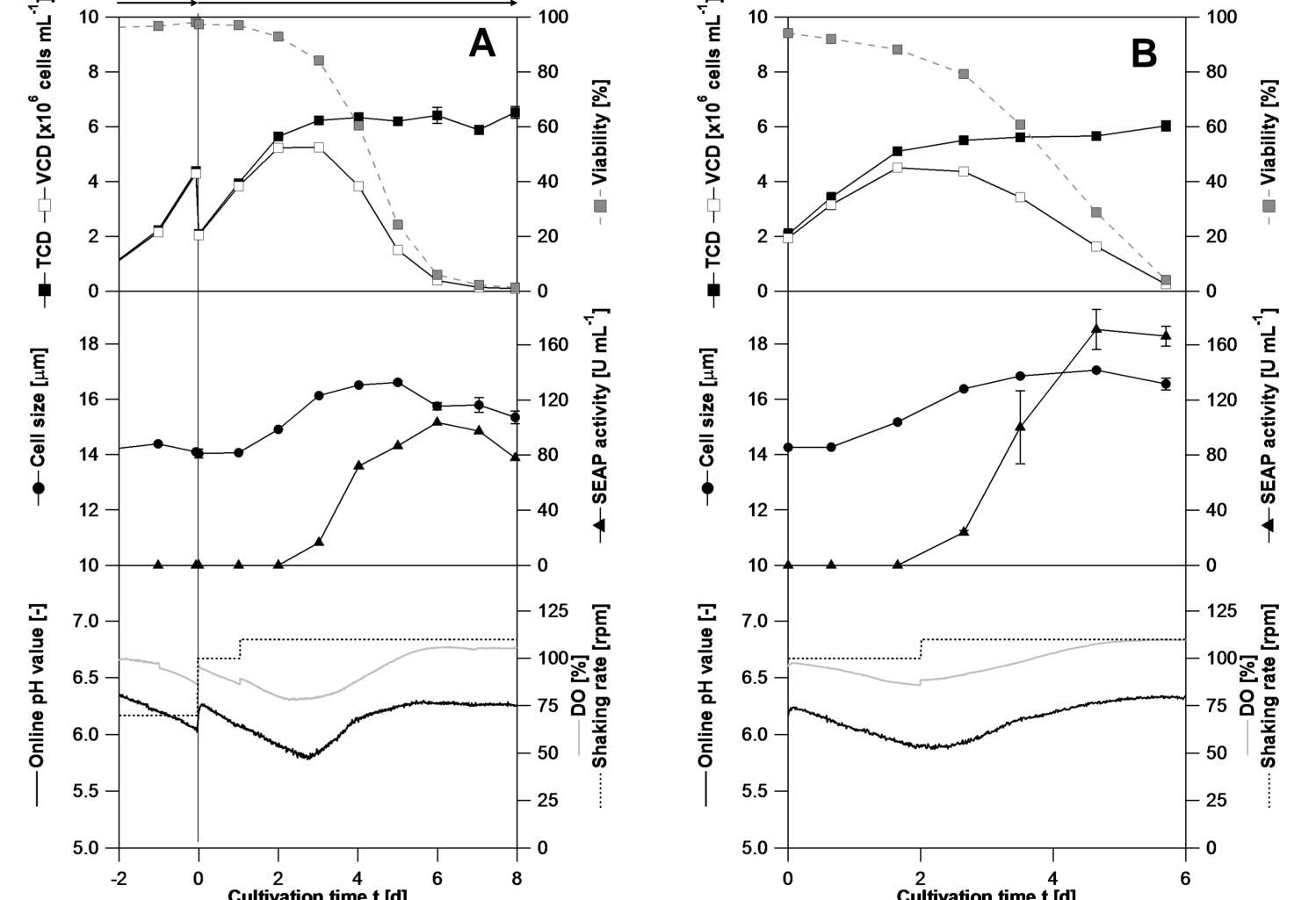
^c TU Berlin, Department of Biotechnology, Germany

Introduction

Insect cells used in conjunction with the baculovirus-expression vector system provide a suitable production system for the development and manufacturing of recombinant protein products such as virus-like particle vaccines [1-2]. In order to speed up product development and manufacturing, new strategies for efficient baculovirus-based production technologies need to be investigated. Among these is the implementation of single-use (SU) bioreactors, which have been proven as cost-effective (48% less capital cost) [3]. Further time- and cost-savings can be achieved by combining SU bioreactors with the titerless infected-cell preservation and scale-up (TIPS) method [4-5] as an alternative to the classical 2-phase production process (2PP). The TIPS method enables a faster, scalable, large-scale protein expression up to 100 L cell culture volume with cryopreserved, baculovirus-infected insect cells (BIIC) in a single scale-up step [4-5].

Α **2PP** TIPS Virus (MVB) Cells 48 hpi Freezing to Freezing to establish WVB_{BIIC} establish WVB Virus amplification Virus titer Thawing of 1 cryovial determination Cell suspension





Methods			
	2PP	TIPS	
Cell line:	Spodoptera	frugiperda (Sf9)	
Expressed protein:	recombinant secreted al	kaline phosphatase (rSEAP)	
Bioreactor:		shake flasks, SB10-X L, 1.5 L, 10 L)	C
Cell counting device:	Cede	ex HiRes	
Analyzer:	BioProf <mark>ile 100 Plus</mark>		
Scale-up parameter:	k _L a	= 14 h ⁻¹	
Virus:	rAcMNPV from WVB	rAcMNPV from WVB _{BIIC}	
Cultivation time:	 Growth phase: 2 days Production phase: 6 days 	Production phase: 6 days	Fig. 1: Workflow of 2-phase production process and TIPS method (A), the cultivation systems used (125 mL (B), 3 L shake flasks (C), and SB10-X (D)).

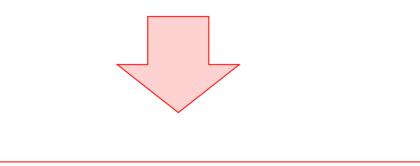
Results

- studies using the 2-phase production Infection and TIPS method were successfully process performed in orbitally shaken SU bioreactors 125 mL and 3 L shake flasks, and SB10-X (see Fig. 2A).
- Maximum viable cell densities (VCD_{max}) of 4.5-6.2x10⁶

CULTIVATION

CELL

ENGINEERING AND


cells mL⁻¹ were obtained on day 2 post infection (pi).

2PP:

- 2 days after inoculation the cell suspension was diluted to introduce the production phase by adding the virus (1. Phase: growth, 2. Phase: production)
- Cell sizes increased up to 12-14.5 %.
- Maximal rSEAP activities of 112-126 U mL⁻¹ were obtained on day 6 pi.

TIPS:

- The production process was directly initiated without growth phase.
- Cell sizes increased up to 16-17 %.
- Maximal rSEAP activities of 164-168 U mL⁻¹ were obtained on day 5 pi.

Pros of the TIPS method:

Fig. 2: Infection studies in SB10-X using the 2-phase production process (A) and the TIPS method (B).

Process	System	VCD _{max}	Cell-size increase	•
		[x10 ⁶ cells mL ⁻¹]	[%]	[U mL ⁻¹]
2PP	125 mL shake flask	6.16	11.54	111.96 ± 4.66
	3 L shake flask	6.10	13.49	125.63 ± 14.89
	SB10-X	5.30	14.33	125.68 ± 32.08

34% higher rSEAP activities **Production** process reduced from **10 days to 6 days**

TIPS	125 mL shake flask	5.93	15.80	168.14 ± 6.05
	3 L shake flask	4.91	15.90	167.10 ± 15.40
	SB10-X	4.50	16.77	163.89 ± 10.40
T				

Tab. 1: Comparison of both 2-phase production process and TIPS method in 125 mL and 3 L shake flasks and SB10-X.

Conclusion

Combining the TIPS method with orbitally shaken SU bioreactor technology was successfully demonstrated at mL- and L-scale. Compared to the 2PP-method, the efficiency of the production process was enhanced by using the TIPS method.

Acknowledgement: The authors would like to thank Prof. Dr. Martin Sievers (Zurich University of Applied Sciences, Switzerland) for providing the recombinant baculovirus.

[1] Eibl, R., Steiger, N., Wellnitz, S., Vicente, T., John, C., Eibl, D., Fast single-use VLP vaccine productions based on insect cells and the baculovirus expression vector system: influenza as case study. Disposable Bioreactors II, Springer, 99-125, 2014. [2] Reid, S., Chan, L., van Oers, M.M., Production of entomopathogenic virus. Mass Production of Beneficial Organisms, *Elsevier*, 437-482, 2014. [3] Lopes, A., Single-use in the biopharmaceutical industry: A review of current technology impact, challenges and limitations, Food and Bioproducts Processing, 93, 98-114, 2015. [4] Wasilko, David J., et al., The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein expression and purification, 65, 122-132, 2009.

Contact: ZHAW, School of LSFM, Ina Dittler Grüental, CH-8820 Wädenswil Mail: ina.dittler@zhaw.ch